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A Survey on Data Augmentation for Text Classification
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Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely
studied research field across machine learning disciplines. While it is useful for increasing a model’s gener-
alization capabilities, it can also address many other challenges and problems, from overcoming a limited
amount of training data to regularizing the objective, to limiting the amount of data used to protect privacy.
Based on a precise description of the goals and applications of data augmentation and a taxonomy for existing
works, this survey is concerned with data augmentation methods for textual classification and aims at pro-
viding a concise and comprehensive overview for researchers and practitioners. Derived from the taxonomy,
we divide more than 100 methods into 12 different groupings and give state-of-the-art references expounding
which methods are highly promising by relating them to each other. Finally, research perspectives that may
constitute a building block for future work are provided.
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1 INTRODUCTION

An increase in training data does not necessarily result in a solution for the learning problem.
Nevertheless, the quantity of data remains decisive for the quality of a supervised classifier. Orig-
inating from the field of computer vision, many different methods to artificially create such data
exist, which are referred to as data augmentation. For images, transformations such as rotations
or changes of the RGB channel are useful, as the resulting model should be invariant for these.
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Similar to computer vision, speech recognition uses procedures that change sound or speed. In con-
trast, research on data augmentation in Natural Language Processing (NLP) faces the difficult
task of establishing such universal rules for textual data transformations which, when executed
automatically, maintain labeling quality [1, 2]. Research in this area was therefore much more
limited before 2019, despite existing extensive areas of application [3]. Nowadays, this challenge
remains but is being addressed by many scientists from different research fields as more possi-
bilities and complex mechanisms open up. Within these fields, researchers strive to meet various
goals, e.g., generating more data for low-data regimes, balancing imbalanced dataset classes, or se-
curing against adversarial examples. Thus, textual data augmentation comes in many contrasting
forms that will be grouped and explained in this survey. We will provide in-depth analysis and also
relate the methods to the state-of-the-art, as they now face another challenge due to the advent
of transfer learning. For example, Longpre et al. [4] demonstrate that many data augmentation
methods cannot achieve gains when using large pre-trained language models, as they already are
invariant to various transformations. They hypothesize that data augmentation methods can only
be beneficial, if they create new linguistic patterns that have not been seen before. Keeping this
in mind, the survey is closed with a meta-perspective on the methods. This survey is therefore
intended to contribute to data augmentation and general text classification by highlighting the
following aspects:

—Goals and applications (C1). We highlight the goals and applications of data augmentation
that we derive from the comprehensive review. These have only been presented to a limited
and incomplete extent in previous research articles.

—Comprehensive survey on data augmentation in text classification (C2). Our survey pro-
vides a holistic overview of the data augmentation field in text classification. While methods
for other NLP disciplines are mentioned, the listing is not complete, nor are the methods
set in relation to each other as the text classification data augmentation methods are.

—Data-structure-driven taxonomy and method-oriented categorization (C3). The text clas-
sification data augmentation methods are clustered according to a data-structure-based,
high-level taxonomy and then subdivided into more fine-grained method groups. This is
also present in the surveys from Shorten and Khoshgoftaar [5] and Wen et al. [6] and is
adapted for the text classification domain.

—Method-driven overview and in-depth details (C4). The textual data augmentation methods
are explained clearly and concisely while including necessary details for delimitation and
comparison. Contrasting to other works, our extensive study contains 12 groups with more
than 100 different approaches.

—State-of-the-art review (C5): Within the literature survey we examine the latest state-of-the-
art considerations, for example, the limited benefit of textual data augmentation methods
with large pre-trained models that are often neglected in current works.

—Relating methods (C6). Throughout this survey, the methods are set in relation to conception
and performance comparisons, while taking the underlying models and application contexts
into account.

—Future research perspectives (C7). We identify future research opportunities that are ei-
ther necessary for a state-of-the-art comparison or sensible to look into because of current
challenges and promising directions for textual data augmentation.

The survey article is structured as follows: The article introduces the foundations of data aug-
mentation in Section 2. This section is then broadened by the consideration of the goals and ap-
plications. Section 3 is subdivided into the various data augmentation groups and contains the
explanations, as well as tabular overviews of the methods. In Section 4, an analysis of the data
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augmentation methods from a more global perspective is given and various future research direc-
tions are discussed. Section 5 outlines the limitations of data augmentation and provides a conclu-
sion for this survey.

2 BACKGROUND: FOUNDATIONS, GOALS, AND APPLICATIONS OF DATA

AUGMENTATION

In many machine learning scenarios, not enough data are available to train a high-quality classi-
fier. To address this problem, data augmentation can be used. It artificially enlarges the amount
of available training data by means of transformations [7]. In the well-known LeNet by LeCun
et al. [8], early versions of data augmentation have already been observed. The notion of data aug-
mentation comprises various research in different sub-areas of machine learning. Many scientific
works merely relate data augmentation to deep learning, yet it is frequently applied in the entire
context of machine learning. Therefore, this article adopts the notion of data augmentation as a
broad concept, encompassing any method that enables the transformation of training data. How-
ever, following common understanding in research, semi-supervised learning is not regarded as a
form of data augmentation and is only thematized if sensible in this survey.

An important term relating to data augmentation is label preservation, which describes transfor-
mations of training data that preserve class information [9]. For example, in sentiment analysis, an
entity replacement within a sentence is often sufficient for label preservation, but randomly adding
words may alter the sentiment (e.g., an additional “not” could invert the meaning of a sentence).
In many research works, label preservation is adapted to also cover transformations changing
the class information, if the label is adjusted correctly. Additionally, many transformations do not
maintain the correct class in every case, but with a high probability. Shorten and Khoshgoftaar
[5] define this probability as the safety of a data augmentation method. When this uncertainty is
known, it could be directly integrated in the label. Otherwise, methods like label smoothing [10]
can model a general uncertainty.

The goals of data augmentation are manifold and encompass different aspects. As mentioned
above, training data are essential for the quality of a supervised machine learning process. Banko
and Brill [11] show that only the creation of additional data can improve the quality of a so-
lution in the confusion set disambiguation problem, while the choice of the classifier does not
lead to a significant change. The model selection and development will remain a crucial aspect
of machine learning. Yet, scholars suggest that in some situations, the choice for higher invest-
ments in algorithm-choice and -development instead of corpus-development should be carefully
considered [11]. Closely connected to this is the big data wall problem, which Coulombe [9] men-
tions in his work on data augmentation. It describes that big companies benefit from the special
advantage of having access to a large amount of training data. Consequently, the already large
GAFAM-Companies (Google/Alphabet, Amazon, Facebook/Meta, Apple, and Microsoft) expand
their predominance over smaller businesses due to their data superiority. An ideal data augmen-
tation method could approach these points and decrease the dependency on training data even
though full elimination is not likely.

Additionally, creating training data for various classification problems is accompanied by high
labeling costs. In many instances, assessment and labeling by experts are necessary to prevent
incorrect training examples. These aspects can, for example, be especially stressed concerning
the field of crisis informatics [12, 13]. Creating relevant classifiers for emergency services and
responders is only possible during crises and requires resources and time from personnel needed
elsewhere to, e.g., act as first responders, therefore in the worst-case costing lives [14]. Similarly,
training data for medical image processing is very valuable. Due to the rareness of certain diseases,
the privacy of patients, and the requirement of medical experts, it is particularly challenging to
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Table 1. Examples for Adversarial Attacks Adapted from Ebrahimi et al. [21]

Original text Altered text

South Africa’s historic Soweto township
marks its 100th birthday on Tuesday in a
mood of optimism.
57% World

South Africa’s historic Soweto township
marks its 100th birthday on Tuesday in a
mooP of optimism.
95% Sci/Tech

Chancellor Gordon Brown has sought to
quell speculation over who should run the
Labour Party and turned the attack on the
opposition Conservatives.
75% World

Chancellor Gordon Brown has sought to
quell speculation over who should run
the Labour Party and turned the attack
on the oBposition Conservatives.
94% Business

provide medical datasets [5]. In a related sense, many domains, such as cybersecurity, have a time-
critical factor that requires training data to be collected as quickly as possible so that, in terms of
the cybersecurity domain example, threats can be responded to quickly [15, 16]. With regard to
such classification problems, data augmentation could help minimize the required amount of data
needed to be labeled and to solve interlinked problems.

Data augmentation is particularly significant for the field of deep learning. Work such as that
by Minaee et al. [17] has already extensively investigated the quality of deep learning algorithms
in text classification, but there are many application scenarios where there is not enough data to
produce high-quality classifiers. For example, Srivastava et al. [18] have also demonstrated that
deep neural networks in general are particularly powerful but encompass a tendency to overfit;
faced with unseen instances, they might generalize badly. This observation can be illustrated with
help of the bias-variance dilemma. On the one hand, deep learning algorithms are, due to their deep
and non-linear layers, very strong models with a lower biaserror. On the other hand, they show a
high variance for different subsets of training data [19]. This problem can be solved by arranging
the algorithm to prefer simple solutions or by providing a bigger amount of training data. The first
option is aimed at methods of regularization, such as dropout or the addition of an L2 norm via
the model’s parameters in the loss-function. The second option is frequently realized by means
of data augmentation and could, in this context, also be considered as a type of regularization.
According to Hernandez-Garcia and König [20], data augmentation is a preferred regularization
method, as it achieves generalization without degrading the models’ representational capacity
and without re-tuning other hyperparameters. While other methods reduce the bias error, data
augmentation’s objective is to keep it constant and is used to solve the problem at the root [5].
Nonetheless, data augmentation still depends on the underlying classification problem and can
therefore not be effectively applied in all circumstances.

In the context of deep learning models, so-called adversarial examples/attacks are generated
more and more frequently. These small changes in the input data, which are almost unrecogniz-
able to humans, mislead the algorithms to make wrong predictions [21]. Table 1 shows two differ-
ent genuine examples in which the smallest changes in the texts alter the classification prediction.
Alzantot et al. [22] further present an algorithm that generates semantically and syntactically sim-
ilar instances of training data, successfully outwitting sentiment analysis and entailment models.
With the help of adversarial training, these automatic adversarial example generators can be used
as data augmentation methods, as done, for example, in [23, 7, 24], or [25], in order for models
to be less susceptible to such easy alterations. If the amount of data are taken into consideration,
it stands out that certain classification problems are often heavily unbalanced, for instance, only
a small amount is relevant (positive) while the irrelevant (negative) data are prevalent [26]. For
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Fig. 1. Taxonomy and grouping for different data augmentation methods.

example, in an entire corpus for topic classification or crisis identification, only a few data actually
relate to the topics or the crisis in question. Zhong et al. [27] term a dataset as unbalanced, if the
distribution of classes within it is not approximately equally balanced. Data augmentation may
help to enhance the amount of data for a certain class in order for balanced class distributions to
be present and thus for a classifier to be able to be modeled more robustly [28, 29].

Data augmentation can also be helpful in sensitive domains. Dealing with confidential or
privacy-related data, one can decrease the usage of real-world data by crafting artificial data. It
is even possible to only train the algorithm on the newly created data, in order to prevent draw-
ing any conclusions on non-artificial training data from a deployed model. For example, Carlini
et al. [30] have demonstrated a method for extracting training data from large language models
that could contain private information. For training such a privacy ensuring model, special data
augmentation techniques that are able to anonymize the data have to be used.

Data augmentation exists in different types and areas of application. A taxonomy of the types
in the textual domain can be seen in Figure 1. The augmentation methods can be divided into the
transformation of raw data (data space) and processed representations of data (feature space) [5].
These representations are transformed types of data, for example, activation vectors of a neuronal
network, the encoding of an Encoder-Decoder Network, or LSTM hidden states, respectively em-
beddings of data. Abstracting from the textual realm, in many cases, data augmentation depends
on the underlying problem (text classification, image recognition, and so on.); and is therefore ap-
plied in different ways in different areas. Procedures generic enough to be used across different
areas are for the most part limited to the feature space.

The most substantial research on data augmentation exists in the field of computer vision. This
is due to the intuitive construction of simple label-preserving transformations. Data augmenta-
tion methods in computer vision are, among other, geometric transformations [7, 24], neural style
transfers [31–33], interpolation of images [34], random partial deletions [35], and generative ad-

versarial network (GAN) data generation [21]. Sophisticated techniques can additively improve
the accuracy baseline for different problems by around 10 to 15 percent [35]. Another area of ap-
plication for data augmentation is speech processing. Researchers have successfully used acoustic
transformations of the input data. Ko et al. [36] have achieved up to 4.3 points better accuracy val-
ues by modifying speed. Furthermore, interfering with vocal tract length [35] or adding noise [34]
may also enhance the quality of classifiers. The application of data augmentation in the textual
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realm is considered a difficult task, since textual transformations preserving the label are difficult
to define [1, 2]. Nevertheless, several simple and sophisticated methods have been developed in
this and adjacent research areas.

3 TEXTUAL DATA AUGMENTATION METHODS

In the following, different data augmentation methods for textual data are summarized, explained,
and subdivided in different groupings. Mainly methods focusing on the application of text clas-
sification are included, although augmentation methods for other tasks in the textual realm are
also mentioned if they fit into the group. In this survey, text classification is considered a problem
in the field of NLP, where units such as sentences, paragraphs, or documents are categorized into
class labels [17]. For example, generative or sequence-tagging tasks, where either text has to be
generated or the words of the units have to be tagged individually, are not regarded as tasks in
this sense. This means that augmentation methods for tasks such as topic classification, sentiment
analysis, or spam identification are focused, described, and analyzed in detail. Other tasks, on the
other hand, like generative question answering, part of speech tagging, or machine translation are
only mentioned in a non-comprehensive way. Therefore, in the context of text classification, our
article provides a comprehensive overview containing the necessary details for researchers and
practitioners. For a more general perspective on NLP augmentations (including sequence-tagging,
parsing, text generation, and so on.), we recommend the reader to have a look at the work of Feng
et al. [37], which is not as detailed in text classification as our work but presents a broader task view.
In contrast to this task-driven view by Feng et al. [37], we are taking a method-oriented perspec-
tive while conducting a data-structure-driven, high-level categorization (see Figure 1). Contrary
to other surveys in the field of data augmentation, we focus on setting the augmentation methods
into context by comparing the conception and performance, with regard to the underlying models
and application context. In this way, the listed augmentation groups contain an explanation with
details on the differences within the group and a comprehensive overview of how the methods
differ and which results they produce. This allows the reader to gain insights into which data aug-
mentation technique might be most promising for the own usecase and what specifics need to be
considered, while it is also possible to follow the data-structure-based taxonomy. In the end, we
discuss important future research directions by setting all methods into context, which can help
accelerate developments in this field.

In the next section, data augmentation methods relevant to textual contexts are summarized and
grouped. Generally, the methods are described in a sensible order for the specific group. In groups
with many similar approaches, we summarize the most important information in tabular form.
We also extract information regarding improvements. The improvement indications are intended
to give a quick overview of how well a method may perform, but are not in-depth informative
or comparable on their own. For a more detailed perspective, the models and datasets are also
displayed. This should provide a more holistic perspective, although in-depth information has to
be extracted from the respective articles themselves.

3.1 Data Space

Augmentation in the data space deals with the transformation of the input data in its raw form,
i.e., in the case of this survey, into the readable textual form of the data.

3.1.1 Character Level.

3.1.1.1 Noise Induction. The addition of noise to the input data are one of the data augmentation
methods with the smallest alterations, especially when applied on a character level. As explained
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in more detail further on, the induction of noise can also be used at the word level as well as in the
feature space.

In this context, the basic idea of the method of Belinkov and Bisk [38] is to add artificial and
natural noise to the training data so that, in their case, neural machine translation (NMT) mod-
els are less susceptible to adversarial examples. As artificial noise, Belinkov and Bisk [38] describe
operations like the random switching of single letters (“cheese”→ “cehese”), the randomization of
the mid part of a word (“cheese”→ “ceehse”), the complete randomization of a word (“cheese”→
“eseehc”), and the replacement of one letter with a neighboring letter on the keyboard (“cheeae”).
Similarly, Feng et al. [39] randomly delete, swap, and insert characters of texts (the prompt por-
tion) that are used for fine-tuning text generators. For this, they moreover ignore the first and last
character of a word. To measure the suitability for text generators, they intrinsically measure the
diversity, fluency, semantic context preservation, and sentiment consistency. The applied method
is better than the baseline in every respect. These augmentations are also usable in the text classifi-
cation domain. Ebrahimi et al. [21] used an existing model, trained with the initial dataset, to gen-
erate adversarial examples. They used the direct input data to flip a letter if the change increased
the loss of the existing model. If a new model is trained with the additional data once again, the er-
ror rate is improved and the success of adversarial attacks is significantly mitigated. Furthermore,
they compared their approach with the adversarial method from the previously mentioned work
of Belinkov and Bisk [38] and the feature space method from Miyato et al. [40] (see Section 3.2.1).
Based on a CharCNN-LSTM on the AG News dataset, they achieve the best improvement in accu-
racy by obtaining an additional 0.62%. While the method of Miyato et al. [40] improved the score
by only 0.24 points, it is interesting to see that the method of Belinkov and Bisk [38] even decreased
the accuracy by 0.33 points. Coulombe [9] describes the induction of weak textual sounds through
the aforementioned change, deletion, and addition of letters in words and, in addition, the alter-
ation of upper and lower case and the modification of punctuation. The highest absolute accuracy
improvement by 2.5% can be seen in comparison to the best functioning baseline. However, the
evaluation was performed with basic architectures and no embeddings, wherefore further studies
are needed to validate the usefulness in a current setting.

Natural noise, as defined by Belinkov and Bisk [38], covers spelling mistakes that are common
in the respective language, using spelling mistake databases. Each word associated with a common
mistake is replaced with the misspelled word, and if there is more than one, the mistake is ran-
domly sampled. Belinkov and Bisk [38] receive varying BLEU scores with their artificial and natu-
ral noise methods; most noise operations made the model more robust against attacks with similar
operations. Most importantly, natural noise almost consistently worsens a translation model re-
garding the baseline. Analogous to the natural noise defined by Belinkov and Bisk [38], Coulombe
[9] also adds common spelling mistakes in the textual data and achieves good improvements when
added to classifiers. The best baseline (XGBoost) was improved by an additional 1.5%. With such
transformations, learners are better able to deal with spelling mistakes in prospective texts, even
if mistakes are not present in the original training dataset. This variant of data augmentation can
for example be of interest when dealing with texts originating from social networks.

3.1.1.2 Rule-based Transformations. Coulombe [9] implements rule-based transformations
through the use of regular expressions. According to him, such rules are not easy to establish, since
many surface-level transformations require deeper changes to preserve the grammar, and other
transformations depend on the language. Valid transformations are, amongst others, the insertion
of spelling mistakes, data alterations, entity names, and abbreviations. Coulombe concretely im-
plements the transformation of verbal short forms to their long forms and vice versa (“I am” ↔
“I’m”). In the English language, this is semantically invariant if ambiguities are preserved [9]. With
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this form of data augmentation, Coulombe achieves very good results [9]. The best baseline model
(XGBoost) additionally gained 0.5% in terms of accuracy.

3.1.2 Word Level.

3.1.2.1 Noise Induction. Noise induction can also be applied on the word level. For example, the
method of Xie et al. [35] encompasses two noise patterns. With “unigram noising”, words in the
input data are replaced by another word with a certain probability. By the method of “blank nois-
ing”, words get replaced with “_”. By the adoption of both patterns, the authors achieved improved
results in their experiments.

Li et al. [41] are using syntactic and semantic methods as well as word dropout for the genera-
tion of noise. Syntactic noise is realized via the shortening of sentences and methods such as the
alteration of adjectives or the relativization of modifiers, while semantic noise is generated by the
lexical substitution of word synonyms (see Section 3.1.2.2). In contrast to these two methods, word
dropout is more clearly comparable to noise. Random input neurons or rather words get masked
out during the training of the network. According to the authors, their proposed methods achieve
an improvement. Especially a combination of all methods promises an improvement of up to
1.7 points in terms of accuracy.

Two of the four sub-methods of the Easy Data Augmentation (EDA) method by Wei and Zou
[2], i.e., random swap and deletion, should also be mentioned as methods of noise induction. In ex-
periments, a combination of both sub-methods led to improved performance of the used classifier.
EDA is very popular in the research field and was used as a method for comparisons in the works
of Qiu et al. [42], Huong and Hoang [43], Anaby-Tavor et al. [44], Kumar et al. [45], Bayer et al.
[46], Feng et al. [39], Luu et al. [47], and Kashefi and Hwa [48]. Wei and Zou [2] report that for a
small dataset these two sub-methods gain higher improvements than the other two sub-methods
that are based on synonym replacement and insertion (see Section 3.1.2). Nevertheless, Qiu et al.
[42], Anaby-Tavor et al. [44], Bayer et al. [46], and Luu et al. [47] also report some cases in which
EDA as a whole data augmentation method decreases the classification score. This result can be
expected, as the methods random swap and deletion are not label preserving, for example, for sen-
timent classification: “I did not like the movie, but the popcorn was good” →random_swap→ “I
did like the movie, but the popcorn was not good”. While Wu et al. [49] also use random swap and
random deletion, they propose random span deletion, where consecutive words are deleted. This
technique would lead to a worse label preservation, but it is only used for language modeling with
contrastive learning. (see Section 3.4).

The training instances of one batch must have the same length when being fed into a neural net-
work. For this purpose, the sequences are often zero-padded on one side. Rizos et al. [50] propose
a specific noise induction method to augment the training data by shifting the instances within
the confines of their padding so that the padding is not solely on one side. Evaluated by means of
a hate speech detection dataset, the authors show that this method achieves additive performance
gains of more than 5.8% (Macro-F1). Sun and He [51] also translate the instances by adding mean-
ingless words either at the beginning or at the end. Unfortunately, they do not evaluate the impact
of this method in isolation.

Xie et al. [52] propose a TF-IDF-based replacement method in which they are replacing unin-
formative words of an instance with other uninformative words. As the authors are combining
this technique with round trip translation (see Section 3.1.4) and unsupervised data augmentation,
it is not clear to which degree it benefits the task. Similarly, Choi et al. [53] replace casual
features/words that are a determining factor for the label. In the contrastive learning scheme, they
mask these words to generate counterfactual examples as well as other non-casual words to gener-
ate normal augmentations. More details and results of this procedure can be found in Section 3.4.
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More noise data augmentation methods related to other tasks can be found in the works of
Cheng et al. [54], Li et al. [41], Wang et al. [55], Andreas [56], Guo et al. [57], Kashefi and Hwa
[48], Sun and He [43], and Kurata et al. [58].

3.1.2.2 Synonym Replacement. This very popular form of data augmentation describes the para-
phrasing transformation of text instances by replacing certain words with synonyms. One of
the first applications of this substitution in the field of data augmentation was introduced by
Kolomiyets et al. [59]. They substituted temporal expressions with potential synonyms from Word-
Net [60]. As the authors argue, the replacement of one original token in a sentence will mostly
preserve the semantics. Based on the time expression recognition task, the authors propose replac-
ing the headword, since temporal trigger words are usually found there. While this application,
however, showed no substantial improvements, the authors also proposed a language model re-
placement method that was more suited for the task at hand (see Section 3.1.2.4).

In later years, many researchers experimented with word replacements based on thesauri. The
works of Li et al. [41], Mosolova et al. [61], Wang et al. [62], and much more partially or primarily
execute synonym substitution in this way. Differences between the studies concern the specific
words that are substituted, the synonyms that come into question, and the utilization of different
databases. For example, X. Zhang et al. [63] and Marivate and Sefara [64] choose the synonyms for
substitution on basis of the geometric distribution by which the insertion of a rather distant syn-
onym becomes less probable. Furthermore, several approaches exclude stop words or words with
certain POS-tags from the set of words considered for replacement. Interesting is also the second
sub-method of EDA by Wei and Zou [2], where synonyms are not replacing specific words, but
are randomly inserted into the instance. The replacement method, synonym-selection, database,
and improvements of the various approaches are listed in Table 2.

Also to be emphasized is the more sophisticated integration into the learning process, as de-
scribed by Jungiewicz and Pohl [66]. The authors replace words with synonyms only if the re-
placement with the chosen synonym maximizes the loss of the current state of the classifier model.
Apart from this, there are approaches that adapt the general idea of thesauri-based replacements
to perform augmentation on specific tasks, for example, in Kashefi and Hwa [48] and Feng et al.
[39].

3.1.2.3 Embedding Replacement. Comparable to synonym substitution, embedding replace-
ment methods search for words that fit as good as possible into the textual context and addi-
tionally do not alter the basic substance of the text. To achieve this, the words of the instances are
translated into a latent representation space, where words of similar contexts are closer together.
Accordingly, these latent spaces are based on the distributional hypothesis of distributional se-
mantics [69, 70], which is currently mostly implemented in the form of embedding models. The
selection of words that correspond to this hypothesis and are, thus, near in the representation
space, implies that the newly created instances maintain a grammatical coherence, as displayed in
Figure 2. Besides this advantage, Rizos et al. [50] argue that the “method encourages the down-
stream task to place a lower emphasis on associating single words with a label and instead place
a higher emphasis on capturing similar sequential patterns, i.e., the context of hate speech”. The
benefits of this data augmentation technique in comparison to the synonym substitution method
are that techniques based on the distributional hypothesis are more comprehensive and the context
of texts is considered. This means that substitutions are not limited by a database, like WordNet,
and that grammatically more correct sentences can be generated [71]. Furthermore, the general
form of this approach can be beneficial for languages, which have no access to a large thesauri but
a lot of general text resources, on the basis of which the self-supervised embedding models can be
easily trained [9].
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Table 2. Overview of Different Approaches of the Synonym Replacement Method

Synonym
Database Replacement Method Synonym Selection Model Base Dataset Improvements

[59] WordNet Headword replacement Not stated Logistic
Regression

TempEval
Reuters (12)
Wikipedia (1)

−1 (F1)
−0.6
−0.1

[63,
65]

mytheas
(LibreOffice)
WordNet-
based

Randomly chosen number of
words based on geometric
distribution.

Randomly based on
geometric distribution.

Character
CNN AG News

DBP.
Yelp P.
Yelp F.
Yahoo A.
Amazon F.
Amazon P.

[63]/[65] (Acc.)
−0.38/−0.57
+0.05/+0.13
−0.03/
+0.36
+0.22/0.65
+0.1/0.1
−0.17/−0.17

[41] WordNet Substitutable words are nouns,
verbs, adjectives, or adverbs
that are not part of a named
entity.
Each word is replaced with a
certain probability.

The remaining probability
of substitution is shared
among the synonyms
based on a language model
score.

CNN MR
CR
Subj
SST
MR/CR
CR/MR

+0.8 (Acc.)
+1.2
+0.5
+0.1
0.9
0.3

[9] WordNet Only adverbs and adjectives,
sometimes nouns, more rarely
verbs.

Most similar companion
information of the
synonym with the context
of the chosen word.

XGBoost
MLP (2 hidden
layer)

IMDB +0.5 (Acc.)
+4.92

[61] WordNet No pronouns, conjunctions,
prepositions, and articles for
replacement.
Choosing uniform randomly.

Uniform random CNN with
word
embedding

Toxic
Comment
Classification

−0.09/−0.21
(AUC)

[62] HIT IR-Lab
Tongyici Cilin
(Extended)
(Chinese)

No time words, prepositions,
and mimetic words.
Chi-square statistics method.

Chi-square statistics
method

Character
CNN-SVM

Hotel R.
Laptop R.
Book R.

∼+1 (Acc.)
∼+1
∼+0.25

[64] WordNet Verbs, nouns, and their
combination. Geometric
distribution.

Geometric distribution DNN AG News
Sentiment
Hate Speech

∼+0.4 (Acc.)
∼+0
∼−0.8

[66] WordNet &
Thesaurus.
com

For Minibatch:
Augmentation with probability,
POS-tag replacement,
replacement of one word per
sentence that maximizes loss.

Synonym that maximizes
the loss.

Kim CNN TREC +1.2 (Acc.)

[2] WordNet No stop words.
Choosing n random words to
be replaced (SR) or from which
the synonyms are inserted at a
random position (RI)

Uniform random CNN Classification
tasks (500)
(2000)
(5000)
(full)

SR/RI (Acc.)
∼+1.9/∼+2.0
∼+1.2/∼+0.9
∼+0.7/∼+0.6
∼+1.0/∼+0.9

[1] WordNet Replacement of a word based
on a certain probability.

Temperature
hyperparameter learned
while training.

CNN SST-5
SST-2
Subj
MPQA
RT
TREC

−0.6 (Acc.)
+0.5
+0
+0.2
+0.1
−0.4

[42] WordNet Replacement of a word based
on a certain probability.

Temperature
hyperparameter learned
while training.

TextRCNN ICS
NEWS

−0.26 (Macro F1)
+1.63

[67] WordNet Not stated Not stated BERT SST-5 (40)
IMDB (40)
TREC (40)

−0.87 (Acc.)
−0.87
+0.01

[68] WordNet No stop words. 10% of
documents randomly selected.

Not stated M-BERT CodiEsp-D
CodiEsp-P

+0.6 (F1)
−0.7 (F1)

(Continued)
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Table 2. Continued

Synonym
Database

Replacement Method Synonym Selection Model Base Dataset Improvements

[39] WordNet Keywords replaced are ordered
by their RAKE score (e.g., the
probability of being a
keyword).

Randomly selected.
Replacement only with
same POS-tag.

No model
(intrinsic
evaluation
with different
metrics)

Yelp-LR (small
subset of Yelp
Reviews)

+0.015 (SBLEU)
−0.018 (UTR)
−0.02 (TTR)
−0.016 (RWords)
0 (SLOR)
−0.007 (BPRO)
+0.001 (SStd)
0 (SDiff)

[..]*

*The full table (more methods) is available in the supplemental materials (online).

Fig. 2. Example of a sentence with predicted words that can be used to replace a word in the sentence [1].

Wang and Yang [72] use this kind of augmentation to better classify annoying tweets. They
utilize k-nearest-neighbor to identify the most suitable embeddings as a substitution of the training
data words. Compared to the baseline, they achieve an additive improvement of up to 2.4 points in
the F1-Score with logistic regression. Marivate and Sefara [64], Rizos et al. [50], Huong and Hoang
[43], and others utilize the embedding replacement in very similar ways. The greatest differences
in terms of the method exist in the selection of words to be replaced (e.g., POS-tag based) and the
selection of the replacing words based on the embeddings. An overview of the differences can be
found in Table 3.

A major factor for poor results is that the embedding replacement does not necessarily guar-
antee the preservation of the contextual meaning of the instances. This, in turn, could lead to
distortions of the label; e.g., “the movie was fantastic” and “the movie was horrible” are valid
transformations but the sentiment is the opposite. A way to address this issue is the use of the
counter-fitting method of Mrkšić et al. [74] for synonym embedding substitution, as carried out
by Li et al. [41]. Counter-fitting is an approach that depicts word embeddings on the basis of a tar-
get function in a way that similarities between synonyms are rewarded and similarities between
antonyms are sanctioned [74]. Li et al. [41] extend this approach by selecting the most fitting
words with a higher possibility for the replacement. This is done by leveraging a language model
that can give an indication of how well a given word fits into a sequence. However, the authors
achieve rather mixed results with this method. The counter-fitting method offers considerably less
replacement possibilities, since embeddings have to be trained on the downstream task, leading
to a smaller coverage of their corpora words. Alzantot et al. [22] use this method in combination
with a language model filtering in their adversarial example generator. They extend the approach
by only incorporating the words that are maximizing the target label prediction probability (label
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Table 3. Overview of Different Approaches of the Embedding Replacement Method

Replacement
Selection

Embedding
Selection

Model Base Dataset Embedding Model Improvements

[72] Not stated K-nearest-neighbor
and cosine similarity

Logistic regression Petpeeve dataset UrbanDictionary W2V
Twitter W2V
GoogleNews W2V

+0.3 (F1)
+1.7
+2.4

[64] Random Random with
probability
proportional to
cosine similarity.

DNN AG News
Sentiment
Hate Speech

Wikipedia W2V
Wikipedia W2V
GloVe Twitter

∼0 (Acc.)
∼+0.5
∼−0.3

[50] Every word Cosine similarity
threshold + POS-tag
matching

CNN+LSTM/GRU HON
RSN-1
RSN-2

Word2Vec Hate Speech
FastText Wikipedia
GoogleNews W2V
GloVe Common Crawl
GloVe Common Crawl
GloVe Common Crawl

−22.7 (Macro F1)
+1.0
−3.3
+0.3
−0.2
0

[41] Substitutable words
are nouns, verbs,
adjectives, or
adverbs that are not
part of a named
entity.
Each word is
replaced with a
certain probability.

Embeddings are
found with
counter-fitting.
Candidates are
replaced with a
probability. The
remaining
probability is shared
among the
embeddings based
on a language model
score.

CNN MR
CR
Subj
SST
MR/CR
CR/MR

GoogleNews W2V −0.6/−4.2 (Acc)
+0.1/−3.7
+0.2/−1.4
−0.4/−4.2
+1.9/+0.4
+0.1/−3.0

[73] No stop words or
symbolic and
numerical data

Cosine similarity
threshold of 0.97

Manhattan LSTM
model

Thai text
similarity task

Thai2fit (Thai language) +1.71

[..]*

*The full table (more methods) is available in the supplemental materials (online).

preservation) of an already trained classifier. The authors report no improvements in terms of the
task testing set, but they show that the model is safer regarding adversarial attacks. Embedding
replacement methods are moreover used in specific task-dependent ways, such as by Kashefi and
Hwa [48].

3.1.2.4 Replacement by Language Models. Language models represent language by predicting
subsequent or missing words on the basis of the previous or surrounding context (classical and
respectively masked language modeling). In this way, the models can, for example, be used to fil-
ter unfitting words, as already discussed in Section 3.1.2.3 in relation to the work of Alzantot et al.
[22]. The authors generate similar words with GloVe embeddings and the counter-fitting method
and utilize a language model to choose only words with a high probability of fit. In contrast to
embedding replacements by word embeddings that take into account a global context, language
models enable a more localized replacement [64]. Utilizing the subsequent word prediction, lan-
guage models can also be used as the main augmentation method. Kobayashi [1] is, for example,
using an LSTM language model to identify substitution words. However, language models do not
only substitute words with similar meaning, but also with words that fit the context in principle
[1]. This trait is encompassed with a greater risk of label distortion. To prevent the attachment
of wrong labels to the new training data due to changed semantics, Kobayashi [1] modifies the
language model so that it allows the integration of the label in the model for the word prediction
(label-conditional language model). Inspired by this approach, Wu et al. [75] alter the architecture
of the language model BERT [76] in a way that is labeled conditional (c-BERT). In an evalua-
tion with different tasks, the authors showed that in a comparison to Kobayashi [1] and other
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Table 4. Evaluation Results of the State-of-the-art Language Substitution Method c-BERT

Publication Method Dataset Improvements (Accuracy)

[75] c-BERT SST-2
MPQA
TREC [..]*

+0.2 (CNN)/+0.5 (RNN)
+0.5 (CNN)/+0.7 (RNN)
+0.8 (CNN)/+0.2 (RNN) [..]*

[77] c-BERT with consistency training MLNI-m +0.4 (RoBERTa-Base)

[44] c-BERT ATIS
TREC
WVA

−1.9 (BERT)/−0.8 (SVM)/−5.8 (LSTM)
+1.1 (BERT)/+1.1 (SVM)/+6.5 (LSTM)
+0.2 (BERT)/0.5 (SVM)/+2.4 (LSTM)

[67] c-BERT integrated in reinforcement
learning scheme

SST-5 (42)
IMDB (45)
TREC (45)

+1.17 (BERT)/+2.19 (normal c-BERT)
+1.97 (BERT)/+1.97 (normal c-BERT)
+0.73 (BERT)/+0.87 (normal c-BERT)

[78] c-BERT and embedding substitution for
multiple-pieces words

MRPC
CoLA [..]*

+3.4 (TinyBERT)
+21.0 (TinyBERT) [..]*

*The full table (more results) is available in the supplemental materials (online).

approaches they were able to considerably increase the performance of a classifier (see Table 4).
However, the c-BERT approach also has the disadvantage that the language model is fixed when
applied, and in the case of low-data regimes, the augmentation might no longer be label preserv-
ing [67]. For this reason, Hu et al. [67] include the c-BERT method in a reinforcement learning
scheme, which learns the task in a normal supervised fashion but is also able to simultaneously
fine-tune the c-BERT LM. With this adaption, the authors significantly outperform the original
c-BERT approach in a low-data regime setting. The results can be found in Table 4 together with
the results of Anaby-Tavor et al. [44], who evaluated c-BERT as comparison, and Qu et al. [77],
who employed the c-BERT model with supervised consistency training (see Section 3.4) on the
MLNI-m task.

Jiao et al. [78] apply the already improved method by Wu et al. [75] and further adjust it in
their work on TinyBERT. In doing so, the scholars reflect on the fact that the quality of the data
generated with BERT is poor if many multiple-pieces words are included. To mitigate this problem,
they propose to perform an embedding substitution on the base of GloVe embeddings [79] for such
words. Further language model augmentations for different tasks are proposed by Gao et al. [80],
Ratner et al. [81], Fadaee et al. [82], and Kashefi and Hwa [48].

3.1.3 Phrase and Sentence Level.

3.1.3.1 Structure-based Transformation. Structure-based approaches to data augmentation may
utilize certain features or components of a structure to generate modified texts. Such structures
can be based on grammatical formalities, for example, dependency and constituent grammars or
POS-tags. Such approaches are therefore more limited to certain languages or tasks. Şahin and
Steedman [83] are, for example, concerned with the augmentation of datasets from low resource
languages for POS-tagging. By the method of “cropping”, sentences are shortened by putting the
focus on subjects and objects. With the “rotation” technique, flexible fragments are moved. The
authors state that this method is dependent on certain grammatical sentence structures in differ-
ent languages and probably only generates noise in the English language. Both methods are well
suited for a multitude of low-resource languages. They were also tested by Vania et al. [84] for the
augmentation of training data for dependency parsers for low-resource data.

Feng et al. [85] propose a method for changing the semantics of a text while trying to preserve
fluency and sentiment. Given a set of phrases (replacement entities) to every instance, the so-called
Semantic Text Exchange method first identifies phrases in the original text that can be replaced
by a replacement entity based on the constituents. Then phrases similar to the identified phrases
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are replaced by a masked token. Subsequently, this is filled by an attention-based language model
so that the similar words better suit the replacement entity. Feng et al. [39] adapt this approach
by automatically selecting the 150 of the 200 most frequent nouns from the Semantic Text Ex-
change training set as replacement entity candidates and splitting their Yelp Review dataset into
windows, as the method is only suitable for short texts. In an analysis with this dataset Feng et al.
[39] reported that the Semantic Text Exchange method decreases fluency, diversity, and semantic
content preservation.

An important work was proposed by Min et al. [86] who show that inversion (swapping the
subject and object part) and passivation result in a higher generalization capability in natural
language inference. In fact, considering their work in comparison with preliminary work [87]–
[89] suggests that BERT is able to extract the relevant syntactic information from the instances
but is unable to use this information in the task, as there are too few examples in the MNLI dataset
demonstrating the necessity of syntax. Here, even a limited utilization of Min et al.’s [86] data
augmentation methods already helps to mitigate this problem.

3.1.3.2 Interpolation. In numerical analysis, interpolation is a procedure to construct new data
points from existing points [90]. While the formal interpolation versions are found in the feature
space section, a sensible definition of interpolation in the data space of text is difficult to construct.
However, the substructure substitution (SUB²) method by Shi et al. [91] is considered as such
in this context due to its resemblance to the feature space methods. SUB² substitutes substructures
(dependents, constituents, or POS-tag sequences) of the training examples if they have the same
tagged label (for example, “a [DT] cake [NN]” in an instance can be replaced with “a [DT] dog
[NN]” of another instance). The variant adapted for classification views all text spans of an instance
as structures and is constrained by replacement rules that can be combined or completely left
out. The replacement rules are only replacing (1) same lengths spans, (2) phrases with phrases,
(3) phrases of the same constituency label, and (4) spans that come from instances with the same
class label. The authors show that their methods outperform the baseline when applied to low-
resource tasks. Their classification variant nearly doubles the accuracy on a subsample of the
SST-2 and AG News datasets. Furthermore, they achieve better results than the language model
augmentation c-BERT (Section 3.1.2.4). Similarly, Kim et al. [92] propose a data augmentation
method based on lexicalized probabilistic context-free grammars that extract grammar trees from
an input sentence and combines/substitutes them internally and with trees from other instances
of the same class. Words are replaced with other words having the same POS-tag from the other
sentences of the same class and WordNet synonyms. In this way, they can achieve a considerable
performance improvement when applied in a few-shot, semi-supervised learning environment.

3.1.4 Document Level.

3.1.4.1 Round-trip Translation. Round-trip translation1 is an approach to producing para-
phrases with the help of translation models. A word, phrase, sentence, or document is translated
into another language (forward translation) and afterward translated back into the source language
(back translation) [93]. The rationale behind this is that translations of texts are often variable due
to the complexity of natural language [9], which leads to various possibilities in the choice of terms
or sentence structure. The process is depicted in Figure 3.

The approach is promising because of its good inherent label preserving and highly valuable
paraphrasing capabilities. By the translation of the text, the content is preserved and only stylistic

1Even though Coulombe [9], Yu et al. [94], Xie et al. [52], Qu et al. [68], and others use the term backtranslation for their
data augmentation works as well, these approaches are assigned to the round-trip translation approaches because they
execute forward and back translation.
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Fig. 3. Round-trip translation process [94].

features based on the traits of the author are excluded or altered [95]. Some translation systems
can propose several translation options; this is hinted at in Figure 2 (“k^2 paraphrases”). Yu et al.
[94], Aroyehun and Gelbukh [71], Coulombe [9], Kruspe et al. [96], and others use this technique
to generate artificial training data. Their works differ with regard to the used language and the
subsequently applied filtering methods. These filtering methods are important, as the process of
the twofold translation may be faulty [71]. Furthermore, Xie et al. [52] as well as Chen et al.
[97] change the normal beam search generation strategy to random sampling with a temperature
parameter to ensure a greater diversity. Details on the different round-trip translation applications
are presented in Table 5.

3.1.4.2 Generative Methods. Generative methods are becoming increasingly interesting in re-
cent data augmentation research. As the capabilities of language generation increased significantly,
the current models are able to create very diverse texts and can thus incorporate new information.
Here, Qiu et al. [42] introduce a variational autoencoder (VAE) based on a method that is used
for text generation in their system. VAEs are probabilistic neural network structures that consist
of an encoder network, which transforms input data into a latent representation, and of a decoder-
network, which transforms the latent representations back. The authors differentiate between un-
conditional and conditional VAEs. With unconditional VAEs, separate text generation models are
trained for all classes, whereas with conditional VAEs, the label information is fed into the model
as an additional input. Furthermore, they distinguish between sampling from the prior distribu-
tion, which leads to greatly diverse instances, and the posterior distribution, which produces text
that is semantically closer to the training data. With the unconditional VAE and sampling from
the prior distribution, they achieve the highest improvements of up to 2 F1-points (see Table 6).
Malandrakis et al. [102] make similar efforts by evaluating VAEs for augmentation. While their
objective is more narrowed, as they are interested in natural language understanding with lim-
ited resources, they analyze a broader variety of VAE augmentation variants. They also propose
augmentation by conditional and unconditional VAEs with sampling from the posterior or prior
distribution. Furthermore, they test two different learning objectives, where in the first the VAEs
are used to reconstruct the input and in the second the VAEs take an instance of a particular class
and try to construct another instance from that class. They also experiment with the addition of a
discriminator network to the VAE that predicts the respective class from which an output appears
to be. In intrinsic and extrinsic evaluations, the conditional VAEs with the reconstruction task
are best performing. The discriminator variant achieves poor results, which stem from the little
amount of available training data for the many different classes. Contrary to the improvements of
Qiu et al. [42], the CVAEs outperform the VAE generation. An excerpt of the extrinsic evaluation
is given in Table 6. However, it must be considered that the task at hand is very specific.
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Table 5. Overview of the Round-trip Translation Approaches

Translation
Model

Languages Filtering Model Dataset Improvements

[94] Google’s NMT
[98]

en→ fr→ en No filtering Convolution and
self-attention

SQuAD +1.5 (EM)/+1.1
(F1)

[9] Google Translate
API

Not stated Excluding identical
instances. Similarity
threshold based on
lengths.

XGBoost
MLP 2 hidden layer

IMDB +0 (Acc.)
+5.8

[71] Google Translate
API

en→ fr, es,
de, hi→ en

No filtering NBSVM
LSTM
BiLSTM
LSTM-CNN
CNN-BiLSTM [..]*

Aggression
Detection

+0.19 (Macro F1)
+7.39
+5.6
+19.45
+14.33 [..]*

[96] Google Translate Randomly
selected

No filtering Fusion CNN TREC Incident
Streams track

∼−1.2 (F1)

[64] Google Translate
API & Amazon
translate

en→ fr,
de→ en

“We ensured that the
[. . . ] texts carry the same
meaning as the source
text”

DNN AG News
Hate Speech

∼+0.33 (Acc.)
∼−2.3

[52] WMT’14
English-French
translation model

en→ fr→ en No filtering Randomly initialized
transformer

Yelp-5 +1.65 (Acc.)

[77] WMT19 and
released in
FairSeq

en→ de→ en No filtering RoBERTa MLNI-m +0.9 (Acc.)

[99]*** Translation
models from Britz
et al. [100]

en→ de, zh
→ en

No filtering BERT QQP
RTE
SST-2
CoLA [..]*

+0.4 (Acc.)
+3.6 (Acc.)
+0.7 (Acc.)
+2.3 (Mcc) [..]*

[101]** Not stated Not stated No filtering Transformer base with
consistency training

QQP
RTE
SST-2 [..]*

−0.2 (Acc.)
+5.1 (Acc.)
+0.7 (Acc.) [..]*

[..]*

*The full table (more methods and results) is available in the supplemental materials (online).
**Trained with consistency training.
***Trained with contrastive learning.

VEAs are also a main component of the NeuralEditor proposed by Guu et al. [103] that generates
new texts based on edition vectors. For the training of the generative model, they take pairs of
instances x’ and x in the training data that are lexically similar, encode the differences of them and
noise into an edition vector z, and try to generate x based on x’ and z. It should be noted that the
lexical similarity is just a rough approximation of semantic similarity. This represents a potential
source of error, as, e. g., instances could be negated which in turn weakens the label preservation
capabilities. However, this suffices for the purposes of the authors, as they only use the method for
language modeling. Specifically, in this domain, they report improvements in terms of generating
quality and perplexity. Raille et al. [104] propose an Edit-transformer, which is an adaptation of
the Neural-Editor with the additional ability to function cross-domain so that the learned edits
of a large dataset can be transferred to a smaller dataset. Besides the improvements in speed and
language modeling, they also apply their method on three different classification tasks. The results
are shown in Table 6.

Rizos et al. [50] create an RNN that, depending on a specific class, learns language modeling to
generate training data thereafter. The class-specific RNN for augmentation is primed with a ran-
dom start word from the class-specific training data. However, the authors state that this method
produces the poorest results compared to embedding substitution and noise generation. In a similar
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Table 6. Overview of Text Generation Methods

Publication Method Model Dataset Improvements

[42] VAE
CVAE + prior sampling
CVAE + posterior sampling

Ensemble of BiLSTM, TextCNN,
TextRCNN, and FastText with
XGBoost as top-level classifier

ICS (Zh)
News Category Dataset (EN)
ICS (Zh)
News Category Dataset (EN)
ICS (Zh)
News Category Dataset (EN)

+0.04 (F1)
+2.02
−0.13
+1.55
−0.06
+1.88

[102] VAE
CVAE + prior sampling
CVAE + posterior sampling

BiLSTM Movie
Movie + Live Entertainment
Movie
Movie + Live Entertainment
Movie
Movie + Live Entertainment

+4.0 (Macro F1)
−0.5
+5.9
+1.7
+5.6
+0.6

[118] CVAE BERT SNIPS (few shot)
SNIPS
FBDialog (few shot)
FBDialog

+8.00
+0.06 (Acc.)
+7.42
+0.0

[104] Transformer-based sentence editor CNN
CNN
LSTM
LSTM

SST-2 (20%)
SST-2 (100%)
Amazon Reviews (1%)
Amazon Reviews (4%) [..]*

+0.87 (Acc.)
−0.84
+1.12
+0.41 [..]*

[50] RNN LM with random start word
priming

CNN+LSTM + GloVe++ HON
RSN-1
RSN-2

−1.8 (Micro-F1)
+8.2
−7.4

[68] CNN-LSTM LM priming with 30% of
a sentence

CNN-LSTM CodiEsp-P +3.1 (F1)

[51] seqGAN LSTM + pretrained embeddings
CNN + pretrained embeddings
LSCNN + pretrained embeddings

Tan’s task +1.06 (F1)
+0.9
+0.8

[106] CS-GAN (GAN, RNN and
reinforcement learning)

CNN Amazon-5000
Amazon-30000
Emotion-15000
NEWS-15000

+1.6 (Acc.)
−0.21
+0.77
+2.25

[107] GPT-2 for rarer instances without
filtering

Logistic
regression/biLSTM/Bi-attentive
classification + ELMo + GloVe

Alerting
Information Feed
Prioritization

No comparative
results

[44] CVAE BERT ATIS (5)
TREC (5)
WVA (5)

+7.3 (Acc.)
+0.8
−1.8

[44] GPT-2 generation and classifier
filtering

BERT ATIS (5)
ATIS (100)
TREC (5) [..]*

+22.4 (Acc.)
∼+0.5
+4.0 [..]*

[108] DistilGPT2 generation and classifier
filtering

BERT
CNN
BERT

AG-NEWS
CyberTrolls
SST-2

+0.61 (Acc.)
+0.45
+1.63

[46] GPT-2 with conditional fine-tuning,
special prompting, and embedding
filtering

ULMFit SST-2 (100)
SST-2 (700)
Layoff
Management Change
West Texas Explosions
Dublin [..]*

+15.53 (Acc.)
−0.19 (Acc.)
+4.84 (F1)
+3.42 (F1)
+3.81 (F1)
–2.54 (F1) [..]*

[109] GPT-2 with conditional fine-tuning,
special prompting, and classifier
filtering

RoBERTa
FlauBERT

MediaEval
CLS-FR

+0.55 (micro-F1)
+0.57

[110] GPT-2 with a reinforcement learning
component for class conditional
generation.

XLNet Offense Detection (20%)
Offense Detection (40%)
Sentiment Analysis (20%)
Sentiment Analysis (40%)
Irony Classification (20%)
Irony Classification (40%)

+1.3 (F1)
+4.3
+1.2
+1.4
+1.0
+2.3

[113] GPT-3 with prompt-based
generation and pseudo-labeling

BERT (base)
BERT (large)

COLA (0.1%, 0.3%, 1.0%)
SUBJ (0.1%, 0.3%, 1.0%)
SST-2 (0.1%, 0.3%, 1%, full)
SST-2 (0.1%, 0.3%, 1.0%) [..]*

+7.9, 3.2, −2.4
+1.3, −1.8, −1.2
+20.9, 19.3, 5.7, 2.9
+23.7, 14.6, 3.0 [..]*

*The full table (more results) is available in the supplemental materials (online).
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sense, Ollagnier and Williams [68] perform text generation using a language model (LSTM-CNN).
In contrast, they split each document in a minibatch into sentences, then generate new sentences
for 30% of them and utilize 30% of the beginning of a given sentence as a prompt.

Sun and He [51] use the seqGAN architecture [105] to generate artificial data on basis of a GAN.
Comparable to computer vision, seqGAN consists of a generator network creating texts and a dis-
criminator network examining the authenticity of the generated texts next to the real instances. As
the discriminator network can only prove the authenticity after a sequence of words and thus gives
delayed feedback to the generator, the generator network is trained as a reinforcement learning
agent. Utilizing the method as a data augmentation technique, the authors only receive minor im-
provements of classification quality. Partially inspired by SeqGAN, Li et al. [106] propose CS-GAN,
which consists of a GAN, RNN, and reinforcement learning component for sentence generation.
The model receives the information about the label as a prior for the generator, which is imple-
mented with by the RNN and RL components, which are then required by the discriminator to
generate meaningful sentences. Subsequently, a classifier forces the output of sentences to fit the
label. The results are listed in Table 6.

Wang and Lillis [107], Anaby-Tavor et al. [44], Abonizio and Junior [108], Bayer et al. [46],
Claveau et al. [109], and Liu et al. [110] use the GPT-2 model of Radford et al. [111], which achieves
very good results in text generation, to create new complete instances. Concerning the adoption of
the method, Wang and Lillis [107] only describe that they use rare instances as dependent exam-
ples for the generation. Anaby-Tavor et al. [44], on the other hand, develop a method that increases
safety with regard to label preservation. In a first step, they further train the GPT-2 model with
training data of a certain task (fine-tuning). In the process, they concatenate the respective label
to every instance in order to facilitate the generation of new data for the respective class. Finally,
a classifier determines which generated instances can actually be assigned to the class stated.
The authors manage to achieve significant improvements in the classification of sentences. They
show that their method outperforms conditional VAEs (unfortunately no sampling technique is
described) and even EDA (Section 3.1.1.1) and c-BERT (Section 3.1.2.4) when applied to a severe
low data regime. The results of their LAMBADA approach and CVEA implementation are given
in Table 6. Abonizio and Junior [108] try to improve this approach by concatenating three random
samples as a prompt for the generation. Furthermore, they are using DistilGPT2 by Sanh et al.
[112], which is substantially faster and smaller. As can be seen in Table 6, the method consistently
outperforms the baseline. While LAMBADA and PREDATOR are only applicable to short texts as
instances, Bayer et al. [46] designed a GPT-2 based approach to augment short as well as long text
tasks. In this way, very high label preservation and diversity is to be achieved by fine-tuning the
language model on the class-specific data, generating data prompted with specialized training data
tokens, and a filtering method based on document embeddings. They can achieve high improve-
ments for constructed and real-world low data regimes. However, they also discuss the limitations
of their method and useful applications in terms of specific datasets and tasks. The results can also
be seen in Table 6. Similarly, Claveau et al. [109] fine-tune the GPT-2 model using the class-specific
data and input a random word from the original texts for a generation. Afterward a classifier is
applied to filter the generated data instances. They evaluate their approach using English and
French datasets (see Table 6). Liu et al. [110] use a reinforcement learning component after the
softmax prediction of the GPT-2 model to predict the tokens depending on the class for which the
instance is to be generated. The authors tested their method with various model architectures. It
consistently improved all of them in all tasks, especially the larger pre-trained models, like BERT
and XLNet. The results for XLNet are shown in Table 6. Yoo et al. [113] are among the first au-
thors using the much larger GPT-3 model by Brown et al. [114] for data augmentation, which has
considerably better generation capabilities. Such large language models are expensive and hard
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to be fine-tuned on the training data, which is why their augmentation method GPT3Mix selects
some examples from the dataset and incorporates them with the label into sensible prompts for the
model to be conditioned on. The newly created instances are then extracted from the generated
text and a pseudo-label probability is calculated with the GPT model. As shown in Table 6, the
method achieves outstanding performance increases on scarce and one full dataset. The authors
further demonstrate that their method is superior to other augmentation methods, such as EDA
[2], round-trip-translation, and Tmix [97], and that the performance increases if larger models for
the classification are used. Nevertheless, given the size of the GPT-3 network and the correspond-
ingly large training dataset, it might even be able to replicate some of the training (or even test)
instances that were left out in the creation of a scarce dataset.

In the generative method, proposed by Lee et al. [115], the first step is to subdivide the data
into slices (informed by or based on the labels). Then, a generative model is trained on these slices
to predict an instance in the slice based on a subsample of instances in that slice. This model is
subsequently used to generate new data for underrepresented slices by priming it with instances
from it. This way, the authors gain several improvements in text classification, intent classification,
and relation extraction tasks with state-of-the-art results for the latter two. Furthermore, Ding et al.
[116] and Chang et al. [117] propose methods using generative models for tasks other than text
classification.

3.2 Feature Space

Data augmentation in the feature space is concerned with the transformation of the feature rep-
resentations of the input.

3.2.1 Noise Induction. As in the data space, noise can also be introduced in several variants in
the feature space. For example, Kumar et al. [118] employ four such techniques for the ultimate goal
of intent classification. One of those methods applies random multiplicative and additive noise to
the feature representations, as shown in [58]. However, in contrast, they are not transforming the
created representations back into the data space. Another method called Linear Delta calculates
the difference between two instances and adds it to a third (all from the same class). The third
method, which interpolates instances, is further elaborated in Section 3.2.2.2 (see Table 8). For their
fourth method, the authors are adapting the Delta-Encoder by Schwartz et al. [119] for textual data.
There, an autoencoder model learns the deltas between instance pairs of the same class, which is
then utilized to generate instances of a new unseen class. In a normal testing setting, the methods
only slightly improve the classification results, while in a few-shot setting all methods are highly
beneficial.

Several feature space data augmentation methods stem from the adversarial training research
field. As explained in the background section, the models are trained with adversarial examples,
i.e., little perturbed training data instances that would change the prediction or maximize the loss.
This can be formally written as follows [120]:

min
θ

E(Z,y) ∼ D

⎡
⎢
⎢
⎢
⎢
⎣

max
| |δ | | ≤ ϵ

L (fθ (X + δ ) , y)
⎤
⎥
⎥
⎥
⎥
⎦

,

where Θ are the model parameters and δ describes the perturbation noise added to the original
instances (within a norm ball). Further, D is the data distribution, y the label, and L a loss function.
The training of the network (outer minimization) can still be solved by stochastic gradient

descent (SGD), while the search for the right perturbations (i.e., inner maximization) is non-
concave [120]. As described by Zhu et al. [120], projected gradient descent (PGD) [121, 122]
can be used to solve this. Unfortunately, several convergence steps (K) to get a good result make it
computationally expensive [120]. Shafahi et al. [123] and Zhang et al. [124] propose two methods
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Table 7. Comparison of Different Noise Inducing Methods on the GLUE task

Model SST-2
Acc

STS-B
P/S Corr

MNLI-
m/mm-Acc

QQP Acc RTE Acc QNLI Acc MRPC F1 CoLA
Mcc

Baseline RoBERTa-L 96.4 92.4 90.2 92.2 86.6 94.7 90.9 68.0

Adversarial
Training

PGD 96.4 92.4 90.5 92.5 87.4 94.9 90.9 69.7

FreeAT 96.1 92.4 90.0 92.5 86.7 94.7 90.7 68.8

FreeLB 96.7 92.7 90.6 92.6 88.1 95.0 91.4 71.1

ALUM* 96.6 92.1 90.9 92.2 87.3 95.1 91.1 68.2

ALUM − − 91.4 − − − − −
SMART 96.9 92.8 91.1 92.4 92.0 95.6 92.1 70.6

Cutoff** Token 96.9 92.5 91.0 92.3 90.6 95.3 93.2 70.0

Feature 97.1 92.4 90.9 92.4 90.9 95.2 93.4 71.1

Span 96.9 92.8 91.1 92.4 91.0 95.3 93.8 71.5

*only adversarial pre-training.
**supervised consistency training.
The values in bold mark the method that performs best in the respective task.

that calculate the gradient with respect to the input (for PGD) on the same backward pass as the
gradient calculations regarding the network parameters during a training step. This mitigates the
additional calculation overhead of PGD. In detail, Free adversarial training (FreeAT) by Shafahi
et al. [123] trains the same batch of training examples K times so that several adversarial updates
can be performed. You Only Propagate Once (YOPO) by Zhang et al. [124] accumulates the
gradients with respect to the parameters from the K steps and updates the parameters accordingly.
Zhu et al. [120] also propose a method called Free Large-Batch (FreeLB), which is similar to
YOPO, as it also accumulates the parameter gradients. On several tasks, this method consistently
exceeds the results of the baseline and the other two methods. The results of the GLUE dataset are
given in Table 7. Miyato et al. and Miyato et al. [40, 125] change the normal adversarial training rule
so that no label information is needed and call it virtual adversarial training. Without going into ex-
act details, virtual adversarial training regularizes the standard training loss with a KL divergence
loss of the distribution of the predictions with and without perturbations, where the perturbations
are chosen to maximize the KL divergence. While the virtual adversarial training method is
suitable for semi-supervised learning, we are particularly interested in the supervised setting.
Their method improves the supervised DBpedia topic classification task baseline classifier by 0.11
points of accuracy, leading to a +0.03 increase in accuracy in comparison to the conventional ad-
versarial training method. Jiang et al. [126] propose the adversarial method SMART, which relies
on the virtual adversarial training regularization. They introduce the utilization of the Bregman
proximal point optimization with momentum to solve the virtual adversarial training loss, which
prevents the model from aggressive updates [40]. The authors show in their experiments that the
method significantly improves the baseline and is also able to achieve better results than the other
methods discussed in this paragraph (for an overview, see Table 7). Furthermore, they demonstrate
robustness enhancement and domain adaption capabilities in several evaluation applications.

Wang et al. [127] and Liu et al. [128] developed methods for enhancing the pre-training of
language models with adversarial training. Wang et al. [127] simply generate adversarial examples
on the output embeddings in the softmax function of the language models. Thereby they manage
to reduce the perplexity of the AWD-LSTM and QRNN models on different datasets, which leads,
for example, to a reduction of 2.29 points with respect to the Penn Treebank dataset with the AWD-
LSTM model. However, it is not clear how the training of bigger pre-trained language models like
BERT and RoBERTa would have been influenced by this method. This is addressed in the work
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Fig. 4. Visualization of the different cutoff methods [101].

of Liu et al. [128] with their method called Adversarial training for large neural Language

Models (ALUM), which introduces noise to the input embeddings. The authors build their system
based on the virtual adversarial training by Miyato et al. [40], as they noticed that it is superior
to conventional adversarial training for self-supervision. Furthermore, they found out that they
can omit the Bregman proximate point method and the adversarial training proposed by Jiang
et al. [126] and Shafahi et al. [123] when they are using curriculum learning, where the model is
first trained with the standard objective and then with virtual adversarial training. They report
promising generalization and robustness improvements with the largest transformer models. For
example, RoBERTa models can be improved with the ALUM continual pretraining by +0.7 on the
MNLI task, while standard continual pretraining does not introduce further gains. The results on
the GLUE dataset are given in Table 7. The authors also tested the robustness of the models with
three different adversarial datasets, where ALUM achieves significant improvements in all tasks.
In another evaluation setting, they combine adversarial pretraining with adversarial fine-tuning.
ALUM improves all evaluation scores of the standard pre-trained models. This model reaches the
best performances and significantly outperforms the other models in all tested tasks, e.g., with an
increased accuracy of +0.4 more than without tuning the SNLI dataset. The improvement on the
MNLI task is given in Table 7.

With regard to the generative adversarial training methods of the feature space, it is also of
interest to investigate how the newly created examples can be transformed into the data space to
enable their inspection. This is done in the works of Liu et al. and Wan et al. [129, 130]. Wan et al.
attempt to improve the classification behavior of a grammatical error correction system by training
with adversarial examples. Such an example, extracted from the application of loss-increasing
noise in the hidden representation of a transformer encoder, is mapped to the data space by a
transformer encoder that was trained autoregressively. Then they use a similarity discriminator
based on the model to filter instances that are not similar to their initial counterparts. Liu et al.
[129] also use a transformer autoencoder architecture to generate data space instances. In contrast
to the work of Wan et al. [130], they generate the noisy instances from the input embeddings,
subsequently filter instances based on unigram word overlap, and try to improve machine question
generation and question answering tasks. Both methods significantly improve the baselines and
other methods.

Given the constraint that adversarial training can be computationally expensive, Shen et al. [101]
propose three simple and efficient data augmentation methods of the feature space (see Figure 4).
Token cutoff sets the entire embedding of a single word to 0, while the feature cutoff sets one em-
bedding dimension of each word in the input to 0. The third method, span cutoff, employs token
cutoff across a coherent span of words. With each method, several different, slightly modified in-
stances can be created, which the authors see as different perspectives/views that can be integrated
in a multi-view learning fashion through consistency training. This means that the model should
predict similar outputs across different views (details can be found in Section 3.4). The authors
evaluate their model on the GLUE task and compare it with adversarial training algorithms as
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Fig. 5. Illustration of the interpolation method SMOTE.

well as round-trip translation. In three out of eight tasks, an improvement over all other methods
could be achieved (see Table 7). They extend the cutoff strategies to work with language genera-
tion, and thereby significantly outperform the baseline as well as the adversarial training method
of Wang et al. [127].

3.2.2 Interpolation Methods. For textual data, interpolation methods are mostly limited to the
feature space since there is no intuitive way for combining two different text instances. Neverthe-
less, the application in the feature space seems reasonable, as the interpolation of hidden states
of two sentences creates a new one containing the meaning of both original sentences [97, 131].
Besides this, from a learning-based perspective, interpolation methods have a high value for ma-
chine learning models. Possible explanations for the success of interpolation methods may stem
from the balancing of classes, the smoothening of the decision border (regularization) [132], and
the improvement of the representations [133].

For example, the Synthetic Minority Over-sampling Technique (SMOTE) approach in its
original context was developed for the purpose of oversampling the minority class, which, as de-
scribed in the background section, inherently leads to better classification performances. In fact, a
balancing of a class can easily be achieved by simply copying the minority class. However, Chawla
et al. [132] show that simple oversampling leads to more specific decision boundaries than apply-
ing SMOTE in the balancing of classes. Interpolation methods can smoothen the boundary, as
shown in Figure 5. Smoothened and more general decision borders signify that an algorithm can
generalize better and, in relation to training data, is accompanied by less overfitting. In this con-
text, when applying interpolation methods to representations of the input data, Verma et al. [133]
empirically and theoretically prove that representations are flattened with regard to the number of
directions with significant variance. This is desirable since data representations capture less space,
meaning that a classifier is more uncertain for randomly sampled representations and a form of
compression is achieved which leads to generalization [133–135].

3.2.2.1 SMOTE Interpolation. SMOTE is an interpolation method of feature space representa-
tions of input data. With SMOTE, various neighbors close to a specific instance are searched within
the feature space in order to be interpolated with the following formula:

x̃ = xi + λ ∗ dist (xi , x j ),

where (xi , yi ) is the source instance and (x j , yi ) is a close neighbor with the same class
label. dist (a,b) is a distance measure and λ ∈ [0, 1]. Unlike mixup, only instances of the same class
get interpolated. The rationale behind the calculation of neighbors with the same class labels is
that the interpolations tend to be class preserving, leading to a higher safety of the technique.
However, this leads to a limited novelty and diversity of the created instances.

SMOTE is rudimentarily illustrated in Figure 5. In the illustration, a binary classification prob-
lem is shown, in which a learning algorithm has learned the specific decision border. To achieve a
balanced class distribution, a new instance is added to the blue class by utilizing SMOTE. This ad-
dition achieves, apart from a balancing of the dataset, an adjustment of the decision boundary. The
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new boundary is less specific and thus contributes to more general decisions. SMOTE in combina-
tion with textual data augmentation is applied, for instance, in the work of Wang and Lillis [107].
Unfortunately, the authors do not describe how and at which point of the network the method is
applied.

3.2.2.2 Mixup Interpolation. Mixup by Zhang et al. [136] is an interpolation method similar to
SMOTE. In the simplest adoption, the convex interpolation is implemented with the following
formulas:

x̃ = λxi + (1 − λ) x j , whereas xi , x j are input vectors

ỹ = λyi + (1 − λ)yj , whereas yi , yj are one − hot − coded labels

(xi , yi ) and (x j , yj ) are sampled from the training data and λ is either fixed in [0, 1] or λ ∼
Beta(α , α ), for α ∈ (0, ∞).

Mixup is a general technique that can be applied to all kinds of equal dimensional data. How-
ever, text cannot trivially be represented in equal dimensions [137]. As a very general method,
Verma et al. [133] propose the idea of applying mixup within a randomly selected hidden layer of
a neural network. Despite the fact that the authors only perform the tests on image datasets, this
approach paves the way for the application of mixup in many textual-related tasks. The results are
very promising, and for textual evaluations we advise the reader to look at the methods described
below (Table 8), which oftentimes can be seen as specializations of the approach by Verma et al.
[133] for textual data. Marivate and Sefara [64] state that they use mixup on representations of
bag of word models, TF.IDF models, word embeddings, and language models. Unfortunately, the
authors do not explicitly describe how the interpolation is performed. This raises questions about
how to interpolate instances of different sizes, when, for example, word embedding vectors are
used. Marivate and Sefara [64] report about 0.2, 0.4, and 0 points gain for the AG News, Sentiment
140, and Hate Speech detection task. In contrast, Qu et al. [77] describe the internal implementa-
tion of their interpolation. For the interpolation, they draw two instances from a mini-batch and
linearly combine their input embedding matrices in the way described above. They improve the
baseline on the MNLI-m task by an additional 0.6% in terms of accuracy. Guo et al. [138] propose
two variants, wordMixup and senMixup, where the interpolation is applied in the word embedding
space and on the final hidden layer of the neural network before it is passed to a softmax layer.
For wordMixup the sequences have to be zero padded so that the dimensions are the same. For
senMixup, this is not necessary, as the hidden embeddings generated are of the same length each.
The improvement results of both methods with regard to the CNN model with pretrained GloVe
embeddings (trainable), which is the best baseline, are presented in Table 8. Guo [139] further
advances the wordMixup approach by using a nonlinear interpolation policy. The policy is con-
structed to mix each dimension of the individual word embeddings in a given sentence separately.
Furthermore, the labels are also interpolated nonlinearly, while they are learned adaptively based
on the mixed embeddings. This way, a much larger variety of generated examples can be created.
While this procedure outperforms the other two variants in most tasks, it can also have a negative
effect on the classification quality, as shown in Table 8. Similar to the senMixup method, Sun et al.
[137] apply mixup to the output of transformer models. Furthermore, they only activate mixup in
the last half of the training epochs to learn good representations first. The improvements on the
GLUE benchmark are listed in Table 8. In a very similar way, Chen et al. [97] propose TMix, which
is also able to interpolate the hidden representations of an encoder. Indeed, TMix is able to inter-
polate at every layer of the encoder, similar to Verma et al. [133]. Based on the work of Jawahar
et al. [140], who analyzed the types of information learned in different layers of BERT, the authors
narrowed down their approach and opted for 7, 9, and 12 as interpolation layers as they contain
the syntactic and semantic information. The improvements of TMix are also shown in Table 8.
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Table 8. Overview of Different Approaches of the Replacement Method “Mixup Interpolation”

Method Technique for textual
application

Model Datasets Improvements

mixup by Marivate
and Sefara [64]

Not stated DNN AG News
Sentiment 140
Hate Speech

+0.2 (Acc.)
+0.4
+0

[118] Interpolation of the BERT CLS
output

BERT-base-
english-uncased

SNIPS (few shot)
SNIPS
FBDialog (few shot)
FBDialog

+8.36 (Acc.)
+0.0
+7.92
+0.08

[77] Interpolation of the embedding
matrices

RoBERTa-base MNLI-m +0.6 (Acc.)

wordMixup by Guo
et al. [138]

Interpolation of zero-padded
word embeddings

CNN Trec
SST-2
MR [..]*

+1.6 (Acc.)
+0.2
+1.5 [..]*

senMixup by Guo
et al. [138]

Interpolation on the final hidden
layer

CNN Trec
SST-2
MR [..]*

+1.2 (Acc.)
+0.3
+0.8 [..]*

Nonlinear Mixup by
Guo [139]

Nonlinear interpolation of
padded word embeddings

CNN Trec
Subj
MR [..]*

+2.6 (Acc.)
−0.5
+3.6 [..]*

Mixup-Transformer
by Sun et al. [137]

Interpolation after last layer of
the transformer

BERT-large CoLA
SST-2
MNLI-mm [..]*

+2.68 (Corr.)
+0.81 (Acc.)
−0.01 (Acc.) [..]*

TMix by Chen et al.
[97]

Interpolation of the mth BERT
layer (7, 9, and 12 randomly
chosen per batch)

BERT-base +
average pooling +
two-layer MLP

AG News (10)
AG News (2500)
IMDB (10)
IMDB (2500) [..]*

+4.6 (Acc.)
+0.2
+1.8
+0.5 [..]*

TMix evaluated by
[113]

Interpolation of the mth BERT
layer (7, 9, and 12 randomly
chosen per batch)

BERT-base SST-2 (0.1, 0.3, 1.0%)
MPQA (0.1, 0.3, 1.0%)
RT20 (0.1, 0.3, 1.0%) [..]*

−0.2, −1.5, −2.1
+0.2, 2.9, 0.0
+2.3, 0.6, −1.9 [..]*

Intra-LADA [141] Interpolation of an instance with
a randomly reordered version of
itself

BERT-base-
multilingual-cased
+ linear layer

CoNLL (5%)
CoNLL (100%)
GermEval (5%)
GermEval (100%)

+0.24 (F1)
+0.03 (**)
+0.29
+0.04 (**)

Inter-LADA [141] Interpolation of the nearest
neighbors and sometimes
randomly selected instances

BERT-base-
multilingual-cased
+ linear layer

CoNLL (5%)
CoNLL (100%)
GermEval (5%)
GermEval (100%)

+1.32 (F1)
+0.64
+0.49
+0.33

Intra-Inter-LADA
[141]

Combination of Intra- and
Inter-LADA

BERT-base-
multilingual-cased
+ linear layer

CoNLL (5%)
CoNLL (30%)
GermEval (5%)
GermEval (30%)

+1.57 (F1)
+0.59
+0.53
+0.78

*The full table (more results) is available in the supplemental materials (online).
**Included in the pretraining.

Similarly, Chen et al. [141] propose an interpolation augmentation method in which the
hidden layer representations of two samples are interpolated. However, they noticed that this
method is not suitable for sequence tagging tasks. For this reason, they propose Intra- and
Inter-LADA. Intra-LADA aims at reducing noise from interpolating unrelated sentences by only
interpolating an instance with a randomly reordered version of itself. This way, they can increase
the performance in every tested task (see Table 8). However, Chen et al. [141] also hypothesize
that their Intra-LADA algorithm is limited in producing diverse examples. This limitation
leads to Inter-LADA, which sets a tradeoff between noise and regularization by interpolating
instances that are close together. The closeness is estimated through kNN based on sentence-BERT
[142] embeddings and extended by an occasional sampling of two completely random instances.
As it can be seen in Table 8, Inter-LADA oftentimes performs better than Intra-LADA. The
combination of both can further improve the results.
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3.3 Combination of Augmentation Methods

In augmentation research, a common technique is to combine several data augmentation methods
to achieve more diversified instances [143]. Here, the combination can mean either the application
of multiple separate or stacked methods. For the first kind, Sun and He [51] propose word-level and
phrase-level methods that they apply separately. While the results of the word-level and phrase-
level methods differ insignificantly, the combination of both groups of methods produced very
good results. Similarly, Li et al. [41] combined their proposed methods, which led to better results
for the in-domain evaluations. In the work of Bonthu et al. [144] round-trip translation, random
swap, random deletion, and random synonym insertion are separately combined, which leads to
the best improvement of an LSMT classifier. Furthermore, in contrastive learning, it makes sense to
use more than one data augmentation strategy since the goal is to learn meaningful representations
that can be fostered by many different views. For example, Yan et al. [145] and Wu et al. [49] use
several simple methods of data augmentation for the contrastive learning objective. Details on
contrastive learning and the results of the works can be found in the next section. The method of
stacking data augmentation techniques, on the other hand, is not always feasible. It is, for example,
in most cases not possible to first apply a feature space method and then a data space method. Qu
et al. [77] tested this with round-trip translation, cutoff, and adversarial examples. Round-trip
translation and the training with adversarial examples produced the best results. Marivate and
Sefara [64] stack round-trip translation, synonym, and embedding replacement with mixup. In
two out of three evaluation settings, this procedure reduces the minimal error.

For the combination of augmentation methods, the meta-learning augmentation approach by
Ratner et al. [81] is also of interest. It describes the utilization of a neural network to learn data
augmentation transformations [5]. Specifically, Ratner et al. use a GAN to generate sensible se-
quences of transformations that were defined beforehand. This approach is usable for the image
as well as text datasets and the authors show that it can achieve a significant improvement when
applied to a relation extraction task with augmentations based on language model replacements.

3.4 Training Strategies

While semi-supervision is not considered as data augmentation in this work, it can still be sensibly
combined through consistency training. In its origin, consistency training is used to make predic-
tions of classifiers invariant to noise [52]. This can be enforced by minimizing the divergences
between the output distributions of real and noised instances. Additionally, as only output distri-
butions are included in the process, this consistency can be trained with unlabeled data. Several
authors analyze how consistency training behaves when data augmentation methods are used for
noise. This process can be illustrated by taking an instance whose label is unknown, applying a
label-preserving data augmentation method, and then learning the model to predict the same label
for both instances. In this way, the model can learn the invariances and is able to generalize better.
Xie et al. [52] show that they achieve very good results by employing consistency training with
round-trip translation and a TF-IDF-based replacement method, with an absolute improvement of
22.79% in accuracy on an artificially created low-data regime based on the Amazon-2 dataset with
BERT base. They are also able to outperform the state-of-the-art in the IMDb dataset with only
20 supervised instances. Chen et al. [97] even extend this approach within their MixText (TMix)
system. First, they generate new instances with round-trip translation. Then, they guess the label
of the original and augmented instances by taking a weighted average of the predictions of all of
them. In the training, they randomly sample two instances and mix them together with TMix. If
one of the two instances is from the original data, they are using the normal supervised loss, but
if both instances are from the unlabeled or augmented data, they use the consistency loss, like
Xie et al. [52]. Consistency training can also be applied in a supervised fashion as an additional
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term in the training objective to enforce identical predictions. This is, for example, used in the
cutoff method by Shen et al. [101]. They show in their ablation studies that this consistency term
improves the accuracy results additively by 0.15%.

Qu et al. [77] combine supervised consistency training with contrastive learning. The con-
trastive learning scheme should bring the original and augmented instances closer together and
the other instances further apart in the representation space. Contrastive learning can be applied
in the pretraining phase of a language model so that meaningful representations are learned di-
rectly. Wu et al. [49] show that training a language model from scratch with this objective can
lead to increased performances for downstream tasks. As augmentation methods, the authors use
word deletion, span deletion, random reordering and synonym substitution, as well as combina-
tions in sets of two. The evaluation of several tasks shows that there is no clear best augmentation
method. Fang et al. [99] and Yan et al. [145] show that contrastive learning can also result in bet-
ter sentence representations when using an already pre-trained model and further training the
masked language modeling task with contrastive learning. While the work of Fang et al. [99] uses
round-trip translation, Yan et al. [145] experiment with adversarial training, token mixing, cutoff
and dropout. Qu et al. [77] and Choi et al. [53] even include contrastive learning into the super-
vised setting. As augmentation strategies, Qu et al. [77] use adversarial training combined with
round-trip translation, and Choi et al. [53] use counterfactuals based on language model substi-
tution. Combined with consistency training, Qu et al. [77] achieve even further improvements. A
comparing overview can be found in Table 9 of the supplementary material (online).

Other training strategies in which the order of how the training examples are presented to the
learning algorithm is altered are for example employed by Liu et al. [128], Yang et al. [146], and
Claveau et al. [109]. Liu et al. [128] adopt a curriculum learning approach, where the algorithm
first learns less difficult instances. Transferred to the data augmentation topic, the model is first
trained with the original data and then with the augmented data. Yang et al. [146] reverse this step
and first train the model with the augmented data and then with the original data. This way, the
model can correct unfavorable behavior that is learned through noisy augmented data. They also
tried an importance-weight loss in which the weights of the synthetic instances are lower but find
that the other training method performs better.

3.5 Filtering Mechanisms

Mechanisms that filter the generated instances are especially important for methods that are not
perfectly label-preserving. A simple mechanism is, for example, employed by Liu et al. [129], who
remove generated instances based on the overlap of unigram words with their original equivalents.
Similarly, other metrics could also be used, e.g., Levenshtein distance, Jaccard similarity coefficient,
or Hamming distance. Wan et al. [130] use a similarity discriminator, initially proposed by Parikh
et al. [147], which also measures the similarity of two sentences.

The generative methods by Anaby-Tavor et al. [44], Abonizio and Junior [108], and Claveau
et al. [109] filter instances based on a classifier that was trained on the class data. This signifi-
cantly reduces the diversity of samples, and the classifier cannot really be improved as it is already
familiar with these instances. Bayer et al. [46] improve this by using embeddings to measure the
quality of the generated instances with regard to the class and more importantly by incorporating
the human expert in the loop who needs to determine the correct threshold. However, Yang et al.
[146] consider another filtering mechanism in their work, which does not require human assis-
tance and is very sophisticated due to the inclusion of two perspectives. Generally, Yang et al. [146]
propose a generative method that is suitable for increasing the dataset size for question-answering
tasks. While they propose to utilize language models for fine-tuning and generation of questions
and answers, their filtering methods can be adapted for other data augmentation methods as well.
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Table 9. Collection of Some of the Most Advanced Data Augmentation Techniques
for Text Classification

Space Group Work Method description Improvement

Data Space

Character Level
Noise

[21] Flip a letter, if it maximizes the loss +0.62 Acc. (LSTM)

Synonym
Replacement

[66] Only replace words with a synonym, if it
maximizes the loss

+1.2 Acc. (Kim CNN)

Embedding
Replacement

[22] Choosing embeddings based on the
counter-fitting method

−0.6 – +1.9 Acc. (CNN)

[41] Counter-fitting, language model selection, and
maximizing the prediction probability

Safer model (LSTM)

Language Model
Replacement

[67] c-BERT integrated in reinforcement learning
scheme

+0.73 – +1.97 Acc. (BERT)

[78] c-BERT and embedding substitution for
compound words

+1.9 – +21.0 Acc. (TinyBERT)

Phrase Level
Interpolation

[91] Substitutes substructures +20.6 – +46.2 Acc. (XLM-R)*

Round-trip
Translation

[52] Random sampling with a temperature parameter +1.65 Acc.

Generative
Methods

[46] Conditional GPT-2 with human assisted filtering −2.54 F1 – +15.53 Acc. (ULMFit)*

[110] GPT-2 with a reinforcement learning component +1.0 – +4.3 F1 (XLNet)*

Feature
Space

Noise

[126] Virtual adversarial training with special
optimization

+0.5 – +5.4 Acc. (RoBERTa-l)

[128] Virtual adversarial training with curriculum
learning

−0.3 Corr. – +1.2 Acc. (RoBERTa-l)

[101] Embedding noising +0.0 Corr. – +4.4 Acc. (RoBERTa-l)

Interpolation
[137] Interpolation after last layer of the transformer −0.01 Acc. – +2.68 Corr. (BERT-l)

[97] Interpolation of a random BERT layer +0.0 – +4.6 Acc. (BERT-b)*

[141] Interpolating neighbors and reordered versions +0.53 – +1.57 F1 (BERT-b)*

*Results contain tests on low data regime datasets.

A first filtering mechanism determines whether a generated instance is detrimental by measuring
whether the validation loss increases when including the artificial instance. As this would require
retraining the model with each generated example, the authors propose to use influence functions
[148, 149] to approximate the validation loss change. Furthermore, the first train on the augmented
instances and then on the original training data so that the model can adjust itself when unfavor-
able noise is included in the augmented instances. The other filtering mechanism tries to favor
diversity by selecting examples that maximize the number of unique unigrams.

4 DISCUSSION: A RESEARCH AGENDA FOR TEXTUAL DATA AUGMENTATION

In the previous section, different data augmentation methods were grouped, explained, and com-
pared in terms of performance and put into context with each other. One has to keep in mind that
the results reported by the authors of the approaches linked in this survey article are restricted in
their expressiveness and only show one perspective. Many results are limited to special kinds of
models and datasets. Based on our findings, we identified an agenda for future research on data
augmentation as follows:

4.1 Researching the Merits of Data Augmentation in the Light of Large Pre-trained

Language Models

Generally, it is not possible to determine which augmentation method works best for a
given dataset, nor predict which research direction will be the most appealing in the future.
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Nevertheless, some patterns in current approaches hint at the directions research can follow
in order to overcome current obstacles and challenges. One of the most significant challenges,
as formulated by Longpre et al. [4], concerns the usage of large pre-trained language models,
which makes the utilization of several data augmentation methods obsolete. Large pre-trained
models are currently state-of-the-art, nevertheless, we advise taking further advancements and
findings in the research landscape into account, as for example deep belief networks [150],
capsule networks [151], or task-specialized networks e.g., for sentiment analysis [152, 153].
Experiments with BERT or other bigger language models are therefore of particular interest.
Similarly, several studies [44, 46, 67, 110, 129, 113] have shown that methods only slightly trans-
forming instances with random behavior, such as with synonym replacement (Section 3.1.2.2),
EDA (synonym replacement, random swap, deletion, and insertion in one) (Section 3.1.2.1), or
by inserting spelling errors (Section 3.1.1.1), tend to be less beneficial in this setting than more
elaborate ones. Particularly adversarial training (Section 3.2.1), cutoff (Section 3.2.1), interpolation
(Sections 3.1.3.2 and 3.2.2), and some generative methods (Section 3.1.4.2) have shown significant
improvements with large pre-trained language models. While replacement methods based on
embeddings (Section 3.1.2.3) and especially language models (c-BERT) (Section 3.1.2.4) can also
gain improvements in combination with those pre-trained models, several studies [44, 64, 77, 110]
have shown that the previously mentioned methods can, in most cases, achieve improved results.

The described performance differences become apparent when approaching the challenge
highlighted by Longpre et al. [4] from an intuitive perspective. Large language models map data
to a latent space with representations nearly invariant to some transformations. For example,
synonym replacement methods only replace words that are by definition very close to the
representation space, leading to instances that are almost identical [61]. As Longpre et al. [4]
hypothesize, data augmentation methods can only be helpful, if they are able to introduce new
linguistic patterns. In such instances, using the mentioned methods and generative methods, in
particular, might be sensible, as they are based on other large language models that can introduce
a high novelty. However, the challenge proposed by Longpre et al. [4] does not have to be
universally true. For example, the SUB² method by Shi et al. [91] only interpolates phrases from
the training data and thus does not include unseen linguistic patterns but achieves high gains with
a pre-trained model. Another interesting aspect concerns the experiments conducted by Yoo et al.
[104], with which they demonstrate that their GPT-3-based generative augmentation method
actually improves as the size of the pre-trained classifier increases. The authors hypothesize that
larger classifiers have more capacity to better incorporate the GPT3Mix samples.

4.2 Improving Existing Data Augmentation Approaches

In general, the most promising data augmentation methods have limits and challenges that may be
overcome with further research. Generative models or their output needs to be conditional on
the specific class. Otherwise, the created instances might not preserve the label. This conditioning
is oftentimes reached by training a model, which in turn requires enough data to be consistent.
Bayer et al. [46] have shown that the conditional model can best replicate the data class if the
problem definition and task data are relatively narrow. Tasks with a broad variety of topics in the
data seem less suitable. This problem might be mitigated by adopting new conditioning methods.
Currently, most approaches are extended by filter mechanisms. Existing mechanisms, as detailed
in Section 3.5, have some drawbacks which might be reduced in the future. Another obstacle con-
cerns generative models themselves, which can require many resources and time to create new
instances [46]. Therefore, lightweight alternatives need to be tested in this setting, thus poten-
tially preventing a high dependency on resources, which is referred to by Bayer et al. [46] as the
high resource wall problem. Similarly, methods like round-trip translation are limited by the
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underlying model. For example, Marivate and Sefara [64] hypothesize that round-trip translation
might not be appropriate for social media data, where translation errors increase. This problem will
be addressed in the future, as machine translation models improve their translation capabilities for
such difficult instances.

For adversarial examples, Liu et al. [128], hypothesize that good generalizability performance
stems from the perturbation of the embedding space, rather than the input space. However, data
space adversarial training methods should not be disregarded too quickly, as Ebrahimi et al. [21]
show that their data space method achieves better results than the virtual adversarial training by
Miyato et al. [40]. A general challenge for adversarial training is that it can disturb the true label
space in the training data. For example, adversarial example generators often rely on the belief that
close input data points tend to have the same labels [120]. Concerning the data space methods, this
is often not true for natural language tasks, where few words or even characters determine the class
affiliation (e.g., sentiment classification: “I can’t believe I like the movie”→small_transformation→
“I can’t believe I like the movie”). Whether this applies to the adversarial example generators in
the feature space needs to be evaluated. If so, research needs to find a way to exclude cases where
small transformations disturb labels and at best include cases where stronger transformations still
preserve the labels. For this purpose, inspecting feature space methods would be helpful. However,
such an inspection is difficult to conduct due to their high-dimensional numerical representation.
The same applies to the feature space’s interpolation methods, where a back transformation to
the data space is not trivial. Though, certain approaches, such as those from Liu et al. and Wan
et al. [129, 130], use techniques such as encoder-decoder architectures capable of transforming the
newly created instances to the data space. An inspection of interpolated instances could lead to
interesting insights. This opens another research direction where the interpolation of instances

in the data space could be further investigated. A method that initially implements this behavior
is SUB² (Section 3.1.3.2), which interpolates instances of the data space through sub-phrase sub-
stitutions. This, however, does not result in a high diversity, which is particularly interesting. In
this regard, further analysis of the GPT-3 language model by Brown et al. [114] could be valuable,
as it shows very interesting interpolation capabilities in the data space.

However, even avoidably inferior methods can achieve better results, if they are integrated
sensibly. The work of Jungiewicz and Pohl [66] can serve as an example. They perform synonym
substitution only, if it increases the loss of the model. This demonstrates that some data aug-
mentation techniques proposed in the different groups are advanced, sometimes adapting existing
methods and refining them.

We highlight some advanced works of the different groups in Table 9 to show which research
directions can be considered in the future. It must be emphasized that these methods are not nec-
essarily the best in their groups. The selection is made by the author team on the basis of the
information gathered while writing this survey.

4.3 Establishing more Comprehensive Evaluation Criteria and Standards for Method

Comparison

A general problem in data augmentation research concerns that mostly only improvements with
regard to the prediction performance on specific datasets are presented. While this metric is likely
the most important one, other metrics, such as time and resource usage, language variety, or config-
urability, are also important for practitioners as well as for researchers. For example, the generative
approaches based on GPT-2 seem very promising when considering prediction performance gain.
Nevertheless, language variety is narrowed down, as the model is primarily trained on English
data. Furthermore, only a few authors discuss the time required for the application of their data
augmentation methods. The GPT-2 based method of Bayer et al. [46] takes up to 30 seconds for
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generating one example, leading to several computing days for a 10-times augmentation of a small
dataset. For instance, in the context of crisis informatics, this might take too long, as classifiers
have to be created quickly for immediate incident management [154]. We, therefore, urge sci-
entists developing data augmentation techniques to consistently describe the limitations of their
approaches. For further data augmentation research, flexible standards should be established in
order for methods to be compared more reliably, similar to other machine learning research fields,
e.g. few-shot learning [155] or natural language generation [156]. It seems unrealistic that one or
few general datasets can capture all peculiarities of data augmentation methods, especially not of
those that one tailored to a specific problem. Nevertheless, a small benchmark that can be included
in evaluations of upcoming data augmentation methods would be desirable. In the bestcase, such
a benchmark would address different data augmentation goals, consisting of two or more datasets,
from which one replicates a few-shot learning setting and the other a normal learning setting.
With the growing usage of generative models, it might also be sensible to consider using datasets
that are not part of current training datasets for language models, as an incorporation of testing
data would lead to wrong conclusions. The benchmark should not be too large, in order to ensure
specific evaluations can still be carried out. Researchers that try to develop such a benchmark,
could also consider to specify how much data augmentation should be performed and what mod-
els should be used. When determining which model should be used, it might be useful to create
an updatable benchmark, as proposed by Gehrmann et al. [156], which can be modified according
to more recent state-of-the-art models.

4.4 Enhancing the Understanding of Text Data Augmentation

Shorten and Khoshgoftaar [5] highlight that while for some image data augmentation techniques
it is easy to understand how they might improve the dataset and derived classifiers, however,
for other techniques this improvement has not been explainable yet. This also applies to the text
regime, where for example, data augmentation methods that paraphrase text without changing the
meaning are naturally sensible, while methods applied in the feature space are much more com-
plex to capture. Already the visualization of the data of feature space augmentations created by, for
example, adversarial examples or interpolation methods, is much more complicated than in the im-
age domain. As previously elaborated, existing approaches try to convert representations back into
the data space by using encoder-decoder architectures [129, 130]. The resulting data space repre-
sentations could then be investigated and used to better understand underlying data augmentation
methods. Furthermore, a more in-depth understanding of why and when data augmentation works
needs to be established. With the rise of large language models, the question emerges whether data
augmentation methods paraphrasing input instances without incorporating new patterns may be
obsolete [4]. Certain works have challenged this perspective, by demonstrating that even existing
patterns can be beneficial for performance [91]. In this context, it is interesting to note that the
augmentation method of Yoo et al. [113] provides better results when the size of the pre-trained
language model increases.

4.5 Fostering the Usability of Data Augmentation Application

Most data augmentation methods are still research-based in their incremental development
progress and therefore not suitable for every practitioner. A simple way to improve usability is
to publish code and, in the best-case, develop libraries that can be used out of the box for aug-
menting a text dataset. Dhole et al. [157] propose the first large framework to include many text
data augmentation methods and filtering mechanisms. The library by Papakipos et al. [158] is not
as big for textual data augmentation methods but can be used for multiple modalities (audio, im-
age, text, and video). While these are very useful libraries, the amalgamation of many procedures
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comes with abstraction problems. For example, only individual data instances can be transformed
and the augmentation procedure does not have access to the entire dataset, so that, for example,
no interpolation procedures are implemented. In addition to creating libraries, it might be useful
to explore augmentations with a good learning process integration. This can be considered as a
criterion to simplify embedding the procedure in the general learning process. Resource utiliza-
tion, speed, and general continuity in the learning process are crucial for this process. The first
two criteria are becoming increasingly relevant as they are related to the current trend of data aug-
mentation, i.e., the use of large underlying models that create a high resource and time execution
overhead. As described above, this might be countered by utilizing more lightweight models. A low
continuity in the learning process refers to the circumstance that a text data augmentation method
is detached from the actual training process; or in the worst case, the learning procedure needs to
be split into two halves. The former, also described as offline data augmentation by [37], means
that the original data are augmented independently from the model training. A data augmentation
technique is called online, if it is embedded into the learning process so that the artificial instances
are stochastically included by the learning algorithm, which is, e.g., implemented in the work of
Bonthu et al. [144]. The second form occurs, for example, when a feature space method needs to
separate the normal network structure, in order to detach the encoder or embedding layer from
the rest of the network. This results in a continuity problem of learning, so that, e.g., the encoder
or embedding level cannot be trained further.

5 CONCLUSION

This survey provides an overview over data augmentation approaches suited for the textual do-
main. Data augmentation is helpful to reach many goals, including regularization, minimizing label
effort, lowering the usage of real-world data, particularly in privacy-sensitive domains, balancing
unbalanced datasets, and increasing robustness against adversarial attacks (see Section 2). On a
high level, data augmentation methods are differentiated into methods applied in the feature and
in the data space. These methods are then subdivided into more fine-grained groups, from noise
induction to the generation of completely new instances. In addition, we propose several promis-
ing research directions that are relevant for future work. Especially in this regard, a holistic view
on the current state-of-the-art is necessary. For example, the increasing usage of transfer learning
methods makes some data augmentation methods obsolete, as they follow similar goals. Hence,
there is a need for more sophisticated approaches that are capable of introducing new linguistic
patterns not seen during pre-training, as suggested by Longpre et al. [4].

While data augmentation is increasingly being researched and seems very promising, it also has
several limitations. For instance, many data augmentation methods can only create high-quality
augmented data, if the original amount of data are large enough. Furthermore, as Shorten and
Khoshgoftaar [5] describe, data augmentation is not capable of covering all transformation possi-
bilities and eliminating all kinds of biases in the original data. Adopting the example of Shorten and
Khoshgoftaar [5], in a news classification task, in which there are no articles containing sports,
the standard data augmentation methods will most certainly also not create sport articles, even
though this would be necessary. In contrast, data augmentation might induce new undesirable
biases. For instance, language models like GPT can contain biases that are then propagated into
the dataset [159]. The wide variety of techniques and some very sophisticated methods also bring
another layer of complexity that needs to be understood. Moreover, data augmentation can be
time-consuming, meaning that not all methods are feasible for time-critical machine learning de-
velopment domains, e.g., in some areas of crisis informatics. An increased demand for resources,
especially concerning training generative models, is inherent to data augmentation.
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In order to mitigate some of the limitations and amplify the strengths of data augmentation,
however, we proposed our research agenda, which comprises (1) researching the merits of data
augmentation in the light of large pre-trained language models, (2) improving existing data aug-
mentation approaches, (3) establishing more comprehensive evaluation criteria and standards
for method comparison, (4) enhancing the understanding of text data augmentation, as well as
(5) fostering the usability of data augmentation application.
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